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Generating natural language descriptions of an image, namely image captioning, has

received much attention in computer vision and natural language processing. Recent
image captioning models are mainly based on the encoder-decoder framework in which

visual information is extracted by an encoder, e.g. using convolutional neural network
(CNN), and captions are generated by a decoder, e.g. using recurrent neural network
(RNN). Although this framework is promising for image captioning, there are still issues

in the RNN decoder for exploiting the visual information to generate grammatically and
semantically correct captions. More specifically, the RNN decoder has limited ability in

dealing with long-term complex dependencies, leading to ineffective use of contextual

information from the encoded data. To address this issue, in this paper, we introduce
a multi-layer gated recurrent unit (ML-GRU) within the conventional RNN decoder,

which enables the modulation of the relevant information flow inside the unit, and thus

leads to the generation of semantically coherent captions. The proposed ML-GRU based
RNN decoder has been extensively evaluated on the MSCOCO dataset, and experimental

results demonstrate the advantage of our proposed approach over the state-of-the-art

approaches across multiple performance metrics.

Keywords: Image captioning; multi-layer GRU; natural language processing.

1. Introduction

Image captioning aims to generate grammatically correct and human-readable de-

scriptions of an image using techniques from computer vision (CV) and natural

1



January 6, 2025 7:46 output
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language processing (NLP). This task leverages the connection between CV and

NLP and has attracted increasing interest, due to its potential applications such

as image indexing or retrieval and virtual assistants for visually-impaired peo-

ple [2,8,19,27,28,42]. Image captioning is a challenging task because it requires an

advanced level of understanding of an image, including the recognition of the ob-

jects and actions in the image, in order to generate meaningful captions with proper

linguistic properties. Therefore, it goes beyond the conventional CV tasks such as

image classification and object detection. Early efforts to address this problem in

the literature have considered the use of either retrieval-based or template-based

models before using deep neural networks. Recently, the encoder-decoder [21] based

neural structure has emerged, which is promising and has become a popular model

for image captioning. This model is composed of two sub-networks, where the en-

coder aims to generate a feature representation of an image using methods such

as CNN, while the decoder translates this representation into natural language

descriptions using methods such as RNN.

For the encoders of the captioning systems, the CNN architectures like

Inception-v3 [36], NASNet-Large [52] (neural architecture search network), Xcep-

tion [4], and ResNet152 v2 [11] are popular choices. Inception-v3 [36] is a 42-layered

deep CNN architecture that uses the asymmetric approach to decompose a kernel

of large-scale convolution into a small-scale kernel of convolution. NASNet [52] is

designed using reinforcement learning and contains two types of cells, namely, the

normal cell, which keeps the width and height of the feature map, and the reduction

cell, which reduces the width and height of the feature map by half. Xception [4]

is a deep CNN consisting of 36 convolutional layers with 14 modules that have

linear residual connections around them and a logistic regression layer for feature

extraction. This architecture is obtained by modifying Inception-v3 with depth-wise

separable convolutional layers. ResNet152 v2 [11] is a deep CNN, which is composed

of residual nets with 152 layers. Unlike the ResNetV1, this architecture uses the

normalization of the stack before each weight layer. The ResNet152 v2 architecture

with the removed classification layer extracts the high-level image feature vector of

the input image using convolution and pooling layers.

The visual information of images extracted by the encoders is then utilized in

language decoders to convert this information word-by-word into natural language

captions. The conventional RNN based decoders, however, have vanishing and ex-

ploding gradient problems. As a result, they are not effective in exploiting long-term

temporal dependencies [14]. Long short-term memory (LSTM) [13] and gated re-

current unit (GRU) [5] networks are proposed to address these problems. LSTM

uses memory cells to retain information for long periods, while GRU does not use

additional memory cells to maintain the flow of information. When the RNN-based

language decoders are used for caption generation, the visual information can be

fed either directly into the RNN or in a layer preceding the RNN [19,38].

Several RNN-based architectures have been proposed, which can be categorized
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into the following four: init-inject [30], pre-inject [48], par-inject [17], and merge [29].

The visual information can be fed as a latent vector to the initial hidden state of

the RNN in init-inject [6, 26], while the latent vector is used as the initial input of

the RNN in the pre-inject architecture [44]. The latent vector is used with the word

vectors of the caption prefix in parallel as an input to the RNN in the par-inject

architecture [7]. Different from the above architectures, the latent vector is not fed

to the RNN directly in the merge architecture as the image is presented to the

language model after the caption prefix is generated by the RNN [3,38].

Although the current encoder-decoder framework improves captioning accuracy

compared to its counterparts, effectively extracting and employing contextual in-

formation from encoded data remains a challenge that results in insufficient perfor-

mance in captioning. This paper introduces a novel image captioning model that

utilizes NASNet-Large for image encoding and a multi-layer GRU based decoder

under the init-inject architecture, thereby enhancing the use of visual information

for accurate caption generation. Based on extensive experimental studies, NASNet-

Large is found to be adequate for encoding visual information. The motivation

behind using GRU is two-fold. First, GRU needs fewer parameters and is compu-

tationally cheaper than LSTM as GRU has one hidden state vector while LSTM

has two state vectors, namely, hidden and cell states [45]. In addition, GRU has

two gates, i.e. the update and reset gates, while LSTM has three gates, i.e. the

input, forget, and output gates. Second, the GRU with one hidden state vector

offers an excellent fit for the requirement of the init-inject architecture in terms

of computational efficiency in practical implementation [38]. The number of layers

in GRU is incremented to ensure the modulation of the most relevant information

flow inside the unit. A higher number of upper layers deployed in the multi-layer

GRU can provide detailed contextual information from the data, thereby providing

an enhanced prediction model [18, 20]. As GRUs are operated on sequence data,

adding layers will increase the level of abstraction over time for input observations.

In turn, this can provide chunking of observations over time or represent the data

at various time scales.

Integrating an ML-GRU into RNN enhances the ability of the decoder to retain

important semantic image information, thereby improving caption generation. Fur-

thermore, to achieve high-quality image features, we implemented NASNet-Large.

This integration enriches the quality of the encoded data, thus elevating the co-

herence of the generated captions. Although ML-GRUs are widely used in various

applications, our study presents an implementation within the field of image cap-

tioning for the first time. Our approach combines a structured integration of GRU

layers under the init-inject architecture, with each GRU layer fine-tuned. Each layer

in the ML-GRU is designed within the init-inject architecture to refine the decoder

at every step. The init-inject architecture structure integrates initial image features

directly into the GRU, allowing the first few layers to focus on encoding critical

visual information that establishes the context for the caption. As the processing
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advances through the layers, the architecture incrementally injects more detailed

and complex semantic features, which the later layers decode to form a coherent

and contextually rich caption. This approach ensures accurate recognition of visual

elements and their meaningful linguistic translation. By adopting such a precise

configuration, the approach aims to advance the state-of-the-art image captioning

with enhanced accuracy and contextual relevance in the generated captions. Ex-

perimental results on the MSCOCO dataset show the advantage of our proposed

approach over the state-of-the-art approaches for caption generation with a higher

performance metric score.

The major contributions of this paper can be summarized as follows.

• We propose a new approach to the neural encoder-decoder framework of

image captioning by introducing multi-layer GRU based RNN, which re-

fines the decoder to evaluate the image attributes extracted in the encoder

for enhanced image captioning. This approach was designed under the init-

inject architecture, and to the best of our knowledge, this is the first time

that the multi-layer GRU is exploited in the encoder-decoder based image

captioning models.

• We perform comprehensive experiments on the MSCOCO dataset and show

that the proposed approach significantly outperforms the state-of-the-art

approaches consistently across different performance metrics. We also inves-

tigate the optimal number of GRU layers to be used for image captioning.

2. Theoretical background

In this section, we present background details about a conventional encoder-decoder

system for image captioning, i.e., the main components utilized in the image encoder

and the language decoder.

2.1. Image encoder

An image encoder converts image data into a feature vector, which represents the

information of the image. CNNs are predominantly employed in the current image

captioning frameworks as an encoder due to their capabilities for dealing with

high-dimensional data and outstanding performance on feature extraction. The

convolutional, pooling, and fully connected layers are the main building blocks of a

conventional CNN. The convolutional layer uses a set of learnable filters to create

the feature map of the image. The pooling layer reduces the spatial size of the

feature map, whereas the fully connected layer produces the output based on all

input from the previous layers [51]. Several well-known CNN architectures have been

employed as the encoder, such as ResNet [11], Xception [4], NASNet-Large [52], and

Inception-v3 [36]. The image encoder extracts a high-level feature representation of

an input image. Then, the features of each input image will be fed into the language

decoder to generate captions, as discussed next.
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2.2. Language decoder

A language decoder utilizes the feature representation to describe the image with

grammatically and semantically correct sentences which are generated word-by-

word. The main components of the decoder (RNN, GRU, embedding layer, and

dense layer) and init-inject architecture are explained next.

Recurrent neural network RNN, a type of deep neural network, is able to model

long-term dependencies in sequential data and suitable for NLP tasks such as speech

recognition, machine translation, and image captioning [51]. Each output is calcu-

lated by repeatedly processing the same function over each instance of the sequence

in RNN.

RNN computes the hidden vector sequence h = (h1, ..., hT ) and output vector

sequence y = (y1, ..., yT ) using the input sequence x = (x1, ..., xT ) with the variable-

length for t = 1, ..., T . The hidden vector ht at time step t is computed with

the input vector xt as ht = f(Wht−1 + Uxt) where W and U denote the weight

matrices, and f denotes a nonlinear activation function such as tanh, ReLU, and

sigmoid. The output vector is computed as yt = f(V ht), where V is a matrix that

connects the current hidden layer with the current output layer [51]. RNNs employ

the information in arbitrarily long sequences in theory but suffer from vanishing

and exploding gradients in practice and cannot capture long-term dependencies.

Despite the fact that a variety of RNN-based architectures could be used, such

as LSTM, as a proof of concept, the GRU is used here, which is more feasible

in handling vanishing and exploding gradients problems, employed for processing

sequential data to generate captions in our experiments.

Gated recurrent unit GRU, which is a type of RNN with a gating mechanism,

has been implemented to address the aforementioned issues. GRU consists of a

hidden state and two gates: update and reset [5]. In GRU, the transition has been

carried on based on the following equations [5]:

rt = σ (Wrxt + Urht−1) (1)

zt = σ (Wzxt + Uzht−1) (2)

ut = tanh
(
Wxt + U

(
rt
⊙

ht−1

))
(3)

ht = (1− zt)ht−1 + ztut (4)

where rt, zt and ut denote reset gate vector, update gate vector, and candidate hid-

den vector, respectively. The subscripts r and z in Wr and Wz denote the weights

of the reset and update gates. σ and tanh are the sigmoid and tangent hyperbolic

activation functions, respectively.
⊙

denotes the element-wise multiplication oper-

ator. ht−1 is taken from the previous GRU as input, and the output of GRU, yt is
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calculated with the sigmoid function as

yt = σ(Woht + b) (5)

where the subscript o denotes the weight of the output vector, and b is the bias.

This makes it easier to configure stacked or multi-layer GRU architectures with two

or more layers that outperform the conventional RNN-based architectures on many

NLP tasks, including language modeling [33].

Embedding and dense layers In decoders, the embedding layer processes texts

to get meaningful units or tokens, resulting in the extraction of linguistic features.

The embedding layer produces embedding vectors of a specified size, representing

the tokens (or words) with numeric components. The embedding vector includes

the linguistic features of tokens that are fed into the GRU. A fully connected dense

layer with an activation function is used to calculate the probabilities of each word

in the vocabulary being selected for representing the image features, which leads to

the next word in the caption to be predicted.

Init-inject architecture In current image captioning approaches, the image and

linguistic features are fed into the RNN with several architectures, including init-

inject, pre-inject, par-inject, and merge. Here, init-inject architecture is employed

due to its superior performance in generation and retrieval measures compared to

its counterparts [38]. The feature vector is utilized as an initial hidden state vector

for the RNN under the assumption that the image feature vector has the same

size as the hidden state vector. The linguistic vector of the token is then fed to the

RNN as an input vector after initialization. An efficient way to implement the RNN

decoder under the init-inject architecture is to use the GRU due to its simplicity

in terms of state and gate vectors. In contrast, LSTM is more complex due to

the use of two-state vectors with three gates, causing multiple versions of the init-

inject architecture to be tested for captioning performance. In addition, GRU has

fewer hyper-parameters to tune and allows its initial state to grow without bound

from an activation function, resulting in the best compatibility with the init-inject

architecture [38].

3. Proposed image captioning approach

This section presents a new approach to enhance the image captions by introducing

multi-layer GRU to the text decoder.

3.1. Multi-layer gated recurrent unit for image captioning

The proposed image captioning approach consists of two steps: image encoder and

text decoder. First, the image encoder is utilized to extract features from an image.
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Fig. 1. The proposed multi-layer GRU based decoder (inside the red dashed line) is given on the

left side while unfolded on the right side.

Then, these features are fed into the text decoder that processes the features to

generate a caption word-by-word. CNN based encoder employed here is a recently

emerged framework that has been found to be promising for feature extraction of an

image. The NASNet-Large model is utilized as a CNN architecture where all image

features are obtained after the average pooling layer, which returns a 4032-element

vector.

The approach proposed in this study involves a multi-layer GRU based decoder,

as depicted in Fig. 1. This decoder provides a novel solution to several limitations

in the current literature, such as efficient visual attributes injection and modulation

of the relevant information flow. The decoder architecture comprises an embedding

layer, multiple GRU layers, and a dense layer, which are utilized under the init-inject

architecture. This architecture facilitates the parallel processing of image features

obtained from a dense map and linguistic features, derived from the embedding

layer.

The multi-layer GRU is a combination of K -GRU for k = 1, ...,K, while h
(k)
t and

x
(k)
t are defined as the hidden and input vector for the kth GRU layer. Each initial

hidden vector (h
(k)
1 ) contains image features as a separate vector with reduced size

from 4032 to the 512-element vector by the dense map to feed the multi-layer GRU

at t = 1. For the subsequent iterations, multi-layer GRU is fed by the updated

hidden vector from the previous iteration (h
(k)
t−1) rather than the dense map. The

first GRU layer is located after the embedding layer, which generates the predefined

size of a meaningful embedding vector, namely the linguistic features, using the start

token. The embedding vector is processed at the first GRU layer, leading to the
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first output vector (y
(1)
1 ), which is the input of the next GRU layer (x

(2)
1 ). The same

procedure is repeated K-times until y
(K)
1 is generated as in Eq. (6), which is the

input for the dense layer.

y
(K)
1 = σ(W (K)h

(K)
1 + b(K)) (6)

To generate the first token, the argmax function has been employed on the output

of the dense layer d1, which is computed as:

d1 = f(Wy
(K)
1 + b) (7)

then the output and hidden state are carried to the RNN as input and hidden

state, respectively, to generate the next token. This process is continued until an

end-of-caption token is generated. In the end, the generated tokens are converted

into their corresponding words employing a vocabulary that is created from the

reference captions of the training set.

4. Experimental evaluations

This section evaluates the proposed captioning approach on the MSCOCO dataset

[25], and a performance comparison with state-of-the-art approaches is presented.

4.1. Dataset

There are several well-known datasets for performance evaluations of image caption-

ing systems, such as Flickr [34], VizWiz-Captions [10], and MSCOCO [25]. Flickr8k

and Flickr30k are the sub-datasets of Flickr. Flickr8k contains 8000 images consist-

ing of 6000 training, 1000 test, and 1000 validation images, whereas Flickr30k con-

tains 29783 training, 1000 test, and 1000 validation images. The VizWiz-Captions

dataset consists of 39181 images captured by blind people. The MSCOCO dataset

contains 118287 training, 41000 test, and 5000 validation images [25] and each im-

age is described with five reference captions. MSCOCO is the most suitable dataset

for the evaluation of our proposed image captioning approach due to its various

images with semantically rich reference captions.

4.2. Performance metrics

To analyze the performance of the compared captioning approaches, several metrics

are employed, including bilingual evaluation understudy (BLEU) [32], consensus-

based image description evaluation (CIDEr) [43], metric for evaluation of transla-

tion with explicit ordering (METEOR) [22], recall-oriented understudy for gisting

evaluation-longest common subsequence (ROUGE-L) [24] and semantic proposi-

tional image caption evaluation (SPICE) [1]. The key points of those metrics are

summarized as follows:
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• BLEU-n (with n = 1, ..., 4) is a machine translation metric that uses n-

gram (e.g. BLEU-2 for 2-grams) pairs to compare a machine-generated

caption with the human-generated ground truth captions [32]. For each n-

gram level, BLEU calculates the precision, which is the ratio of the number

of n-grams in the generated caption that match those in any reference

caption to the total number of n-grams in the candidate text. This method

ensures that the generated caption not only uses correct words but also

forms them into coherent phrases and sentences as found in the reference.

One issue with the BLEU-n is that a higher score can be measured when

searching pairs on short captions even though the result is incorrect. A

brevity penalty is used to overcome this issue, which chooses the closest

reference length if more than one reference is used for a candidate sentence.

• CIDEr is designed especially for image captioning tasks to ensure the con-

sistency of a generated caption, calculating the different weights of n-gram

words with term-frequency-inverse document frequency [43]. It begins by

computing the Term Frequency-Inverse Document Frequency (TF-IDF)

weights for n-grams in the generated captions to emphasize more infor-

mative n-grams while reducing the impact of common ones. Each caption

is then represented as a vector of these TF-IDF scores. CIDEr evaluates

the cosine similarity between the TF-IDF vector of the generated caption

and that of each reference caption, averaging these similarities to derive a

consensus score. This process is repeated across multiple n-gram lengths to

capture both detailed and broader semantic content. The final CIDEr score

is normalized by the average cosine similarity of ideal captions to balance

the evaluation and prevent bias towards longer captions.

• METEOR is an automatic machine translation metric that generalizes

unigram matches between a machine-generated caption and a human-

generated ground truth captions [22]. This metric is developed to address

the weakness of the BLEU-n incorporating semantic and morphological

similarities, enhancing accuracy. METEOR calculates its score using the

harmonic mean of precision (the proportion of correctly predicted words

in the generated caption) and recall (the proportion of reference words

captured in the generated caption), and integrates a penalty for word or-

der discrepancies. This penalty is based on the number of contiguous word

chunks in the hypothesis that appear out of order compared to the refer-

ence captions, ensuring generated captions are not only accurate in word

choice but also in structural integrity, aligning more closely with human

judgment.

• ROUGE-L measures sentence-to-sentence similarity based on the longest

common subsequence (LCS) between the generated caption and a set of ref-

erence captions [24]. It computes recall, precision, and F-measure scores,

reflecting how much of the LCS is captured in both the generated and
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Table 1. Comparison of different CNN encoders with single-layer GRU.

CNN BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr

ResNet152 v2 0.686 0.503 0.359 0.258 0.497 0.221 0.148 0.801

Inception-v3 0.693 0.513 0.368 0.264 0.506 0.230 0.161 0.851

Xception 0.702 0.520 0.373 0.265 0.508 0.230 0.162 0.859

NASNet-Large 0.707 0.524 0.376 0.270 0.510 0.231 0.161 0.876

reference captions. This metric is especially useful in tasks such as summa-

rization and machine translation, where the sequence of words impacts the

coherence and fluency of the output. The ability of ROUGE-L to handle

multiple references and its sensitivity to word order makes it a useful tool

for assessing the linguistic accuracy and relevance of generated captions.

• SPICE is also specially designed to evaluate image captioning tasks. It mea-

sures the semantic correctness of the caption using scene graphs that con-

tain objects, attributes, and relationships between them [1]. These graphs

represent objects, attributes, and their interrelationships, allowing SPICE

to evaluate captions based on their semantic content rather than syntactic

similarity. It calculates an F-Score to balance precision and recall, focusing

on the correctness and completeness of semantic elements.

For all the metrics, a higher score indicates better performance. Our results are

sorted based on CIDEr and SPICE metrics due to their better correlation with

human assessment compared to BLEU-n, METEOR, and ROUGE-L.

4.3. Results and discussion

To construct an image captioning system with high performance, we have analyzed

four different CNN architectures as an encoder in conjunction with a multi-layer

GRU based decoder. In this regard, the Inception-v3, Xception, ResNet152 v2,

and NASNet-Large with five different layer-sized GRU were evaluated in terms of

BLEU-n, CIDEr, METEOR, SPICE, and ROUGE-L metrics. All these configura-

tions have been evaluated based on hyper-parameter optimization.

Our proposed multi-layer GRU based decoder takes linguistic features from

the embedding layer. Two critical parameters based on linguistic features for the

performance of image caption generation are the embedding vector size and the

vocabulary size. The size of the embedding vector is typically set between 50 and

300 [31]. The embedding vector with a small size does not capture the word rela-

tions completely, whereas the large embedding vectors cause overfitting. The size

of the embedding vector affects the training time, computational costs, and the

performance of embedding. The vocabulary size, which has a critical role in the

image captioning tasks, is determined based on the number of common words in all

reference captions and usually varies from 10000 to 40000 words [35]. To optimize

the embedding vector and vocabulary values, our proposed multi-layer GRU based
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Table 2. Comparison of different CNN encoders with multi-layer GRU.

CNN # of Layers BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr

3 0.679 0.494 0.347 0.244 0.488 0.219 0.150 0.782

6 0.675 0.492 0.349 0.248 0.490 0.221 0.150 0.786

9 0.683 0.498 0.352 0.249 0.493 0.219 0.148 0.778

12 0.546 0.326 0.184 0.105 0.414 0.152 0.090 0.420

ResNet152 v2

15 0.544 0.325 0.182 0.104 0.411 0.151 0.093 0.421

3 0.678 0.499 0.356 0.254 0.496 0.229 0.158 0.821

6 0.680 0.500 0.357 0.254 0.496 0.227 0.157 0.818

9 0.689 0.506 0.362 0.258 0.497 0.225 0.154 0.821

12 0.547 0.334 0.192 0.112 0.420 0.154 0.091 0.452

Inception-v3

15 0.555 0.335 0.191 0.110 0.417 0.157 0.093 0.453

3 0.698 0.513 0.366 0.261 0.501 0.228 0.160 0.846

6 0.694 0.509 0.363 0.259 0.499 0.227 0.158 0.844

9 0.702 0.519 0.371 0.263 0.505 0.229 0.162 0.850

12 0.692 0.507 0.358 0.251 0.496 0.221 0.155 0.792

Xception

15 0.559 0.343 0.195 0.115 0.420 0.158 0.093 0.467

3 0.690 0.513 0.369 0.266 0.506 0.237 0.169 0.884

6 0.695 0.514 0.370 0.265 0.505 0.236 0.168 0.884

9 0.705 0.522 0.374 0.268 0.507 0.235 0.168 0.878

12 0.559 0.343 0.197 0.115 0.427 0.161 0.097 0.488

NASNet-Large

15 0.561 0.343 0.195 0.113 0.422 0.161 0.100 0.484

decoder is tested under ten different vocabulary sizes, including 250, 500, 750, 1000,

2000, 3000, 5000, 10000, 20000, and 40000, and eight different embedding vector

sizes (namely, vector sizes with 25, 50, 75, 100, 125, 150, 200, and 250). The opti-

mization tests were carried out by keeping one of two parameters fixed due to the

high training time and computational cost. In the encoder side, the Inception-v3 is

employed as a reference CNN architecture, while a single-layer GRU based decoder

is used in the decoder. First, this reference system was evaluated under different

performance metrics with ten different vocabularies and the embedding vector of

fixed-size, as 100. The best CIDEr metric was observed when the vocabulary size

was 750. Then, the reference system was evaluated under the same performance

metrics with eight different embedding vectors and the vocabulary of fixed-size, as

750. The best CIDEr metric was observed when the embedding vector size was 100.

Hence, the embedding vector size and vocabulary size have been determined based

on the empirical analysis of the aforementioned configurations.

Three different CNN based encoders (i.e., Xception, ResNet152 v2, and

NASNet-Large) are employed to observe the best CNN architecture compatible

with these embedding vector and vocabulary sizes, 100 and 750, respectively. The

evaluation results are given in Table 1. The NASNet-Large based encoder outper-

forms the other three CNNs. The experiments were employed on NASNet-Large

CNN architecture as a reference due to its promising results. To find the optimum

parameters according to layer size, NASNet-Large with three-layer GRU was eval-

uated under the same performance metrics with ten different vocabularies and the

embedding vector of fixed-size, as 100. The best CIDEr metric was observed when

the vocabulary size was 10000. Then, the best CIDEr metric was observed when the

embedding vector size was 125. Using these parameters (10000 for vocabulary and

125 for embedding vector), three CNN (Inception-v3, ResNet152 v2, and Xception)

based encoder was employed to observe the best result for 3-layer GRU. Applying



January 6, 2025 7:46 output
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the same strategy to the 6, 9, 12, and 15 layer GRU, the optimum parameters were

determined as 150, 75, 250, and 200 for the embedding vector size; 20000, 2000,

2000, and 40000 for the vocabulary size, respectively.

The empirical analysis with different vocabulary sizes with a fixed-size embed-

ding vector indicates that the CIDEr metric gradually increases until the 9-layer

GRU, where the maximum level has been reached. The performances of multi-layer

GRU with four different CNN configurations have been listed in Table 2. The em-

pirical results listed in Table 2 indicate that increasing the number of layers until

12-layer can enhance the predictive performance in the proposed image captioning

approach. Among all the configurations, 9-layer GRU architecture outperforms the

other compared schemes in terms of BLEU-n and ROUGE-L metrics, and 3-layer

GRU architecture outperforms the other schemes in terms of METEOR, SPICE,

and CIDEr.

Table 3 presents a comprehensive performance evaluation of the proposed 9-

layer GRU against recent state-of-the-art image captioning architectures utilizing

the MSCOCO dataset. We compare our approach with the following frameworks.

The comparative frameworks include StyleNet [9], which employs a factored LSTM

for extracting stylistic elements in captions. A customizable captioning model tai-

lored for specific application requirements is described in [41]. SemStyle [30] aims

to generate semantically consistent styled captions. An encoder-decoder architec-

ture that utilizes the Inception-v3 model and LSTM for caption generation is pre-

sented in [44]. The gLSTM [15] extends LSTM by injecting semantic information

from images into each unit, aiming to align captions with image content. Phi-LSTM

[37] uses phrases to generate image captions rather than the conventional sequen-

tial word-by-word approach. A CNN+CNN based approach designed for handling

natural language attributes is outlined in [46]. The Mixture of Recurrent Experts

system, which focuses on generating diverse styled captions, is detailed in [12].

Lastly, [47] presents an attention-based method that applies both soft and hard

attention techniques. Additionally, recent advancements in zero-shot and controlled

captioning are also evaluated, including MeaCap [49], DeCap [23], ConZIC [50], a

zero-shot video captioning strategy using GPT-2 and CLIP models [39], and the

ZeroCap approach [40] which merges a visual-semantic framework with a large lan-

guage model. Evaluation employs metrics such as BLEU-1 to BLEU-4, ROUGE-L,

METEOR, SPICE, and CIDEr. The proposed approach consistently outperforms

others, especially in BLEU-1, BLEU-2, BLEU-3, SPICE, and CIDEr, highlighting

advanced context interpretation and description generation capabilities. Moreover,

this is further supported by competitive performance in BLEU-4, ROUGE-L, and

METEOR. The integration of a 9-layer GRU facilitates the handling of complex

temporal dynamics and ensures the maintenance of comprehensive context during

caption generation. The results underscore the potential of the proposed approach

in progressing image captioning research.

The approaches are sorted based on CIDEr metrics, and the highest score is

indicated with bold fonts in each column. The proposed approach outperforms
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Table 3. Comparison of our proposed approach with some state-of-the-art architectures on
MSCOCO dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr

[9] 0.625 - - 0.212 - 0.218 0.135 0.664

[41] - - - 0.270 0.500 0.240 0.009 0.680

[30] 0.653 0.478 0.337 0.238 0.482 0.219 0.157 0.769

[44] 0.667 - - 0.238 - 0.224 0.154 0.772

[15] 0.663 0.485 0.354 0.262 - 0.230 - 0.813

[37] 0.666 0.489 0.355 0.258 0.497 0.231 0.165 0.821

[46] 0.688 0.513 0.370 0.265 0.507 0.234 - 0.839

[12] 0.679 0.501 0.356 0.252 0.501 0.226 0.166 0.844

[47] - - - 0.250 0.516 0.230 - 0.865

MeaCap ToT [49] - - - 0.090 - 0.178 0.127 0.483

MeaCap TF [49] - - - 0.071 - 0.166 0.118 0.425

[40] - - - 0.026 - 0.115 0.055 0.146

[39] - - - 0.022 - 0.127 0.073 0.172

[23] - - - 0.088 - 0.160 0.109 0.421

[50] - - - 0.013 - 0.112 0.050 0.133

Our proposed 9-layer GRU 0.705 0.522 0.374 0.268 0.507 0.235 0.168 0.878

other methods in BLEU-1, BLEU-2, SPICE, and CIDEr metrics. Fig. 2 shows the

ground truth and generated captions by the proposed approach for four images.

From those results, we observe that our proposed approach is capable of capturing

image information with correct and descriptive captions. For instance, in the first

image (Fig. 2 (a)), the generated caption can successfully describe the chair and

umbrella with its color in the image. In the second image (Fig. 2 (b)), the proposed

approach identifies a branch and the action of sitting ; in the third image (Fig. 2

(c)), it identifies cattle and the action of grazing. In the fourth image (Fig. 2 (d)),

the proposed approach generates the words surfboard and row, which accurately

describe the content of the image. These examples show that our proposed approach

can generate natural sentences related to the image.

Deep learning models, including CNNs and RNNs, often require enhanced in-

terpretability. Our approach, as shown in Fig. 2, sometimes generates captions that

diverge from ground truth captions due to a focus on more salient visual elements.

In Fig. 2 (a), the generated caption “a chair with a blue umbrella sitting on the

sand” omits the ground truth detail “A woman walks out of the ocean towards a

beach chair and umbrella”. This suggests the approach prioritizes distinct objects

like the chair and umbrella over less prominent elements. Similarly, in Fig. 2 (b),

the ground truth “The bird is sitting on a small branch of the tree” is simplified

to “a bird is sitting on a branch of a tree”, missing finer details. In Fig. 2 (c),

the contextual elements of the ground truth are reduced in the generated “a herd

of cattle grazing on a lush green field”. Finally, in Fig. 2 (d), the specifics about

positioning of surfboards of the ground truth are absent in “a bunch of surfboards

lined up in a row”.

The performance of the generated captions in Fig. 2 is evaluated using perfor-

mance metrics. The proposed approach scores well on BLEU-1 (0.825) indicating

good word-level accuracy, but scores lower on higher n-grams (BLEU-4: 0.392),

suggesting difficulties with longer phrase accuracies. The METEOR score (0.318)

shows moderate semantic alignment, while the ROUGE-L score (0.607) presents
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(a)

Ground Truth Captions
A woman walks out of the ocean towards a beach chair

and umbrella

This is a chair and umbrella that is sitting near an ocean

A beach chair and umbrella in the sand on the beach

A chair and umbrella sitting on a beach near a person

a chair and a umbrella that is on a beach

Generated Caption

a chair with a blue umbrella sitting on the sand

(b)

Ground Truth Captions
There is a bird sitting on a tree branch

The bird is sitting on the small branch of the tree

A bird is perched on a twig in the trees

There is a bird perched on the tree branch

A gray bird is standing on small brown branch
Generated Caption

a bird is sitting on a branch of a tree

(c)

Ground Truth Captions

A group of cows grazing in a field near a body of water

Several animals standing in the grass near a lake

Several cows grazing on grass near water with trees in the

background

a herd of cows graze lazily by the pond

A herd of cattle grazing on top of a grass covered field
Generated Caption

a herd of cattle grazing on a lush green field

(d)

Ground Truth Captions

A row of surfboards sticking out of the sand sitting next
to each other

a row of surf boards placed in the sand

Several surfboards standing in a row on the beach

A row of surfboards leaned up against a wood rail in the

sand

Many surfboards are propped against a rail on the beach

Generated Caption

a bunch of surf boards lined up in a row

Fig. 2. The generated captions by our proposed approach for four different images from the
MSCOCO dataset.
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Generated Caption: a beautiful
woman in a bathing suit on a beach

(a)

Generated Caption: a close up of a
person wearing a blue hat

(b)

Generated Caption: a small white

house sitting on a lush green hillside

(c)

Generated Caption: a train traveling

down train tracks next to a forest

(d)

Fig. 3. The generated captions by our proposed approach for four different images from the PIPAL
dataset.

decent structural understanding. The high CIDEr score (1.669) suggests effective

capture of salient information, but the lower SPICE score (0.305) indicates a need

for better capturing of finer semantic details of scenes. These results suggest that

while the proposed approach effectively identifies prominent objects, it often over-

looks contextual and subtler details.

Fig. 3 demonstrates the image captioning capabilities of our proposed approach

on four different images from the PIPAL dataset [16]. This dataset includes images

generated by GANs, which present unique challenges such as diverse visual artifacts

and variations. The captions generated by our approach for these images are as

follows:

• (a) “a beautiful woman in a bathing suit on a beach”

• (b) “a close up of a person wearing a blue hat”

• (c) “a small white house sitting on a lush green hillside”
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Table 4. Performance metrics scores across supercategories on the MSCOCO dataset, displaying
count and percentage of images in the training and validation sets relative to the total images and

their respective ratios.

Supercategory BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR SPICE CIDEr Train Images Val Images Val/Train (%) Train/Total (%) Val/Total (%)

Person 0.7093 0.5350 0.3952 0.2937 0.5251 0.2558 0.1845 0.8963 64115 2693 4.20% 54.23% 53.86%

Vehicle 0.6906 0.5067 0.3614 0.2589 0.5085 0.2422 0.1739 0.8044 27358 1160 4.24% 23.14% 23.20%

Food 0.7214 0.5432 0.3979 0.2902 0.5188 0.2413 0.1864 0.7967 16255 708 4.36% 13.75% 14.16%

Kitchen 0.7346 0.5686 0.4233 0.3134 0.5354 0.2492 0.1843 0.8757 20792 909 4.37% 17.58% 18.18%

Appliance 0.7517 0.5952 0.4365 0.3208 0.5527 0.2507 0.1705 0.7441 7880 320 4.06% 6.66% 6.40%

Animal 0.7079 0.5441 0.4026 0.2935 0.5316 0.2565 0.1921 0.9779 23989 1016 4.23% 20.28% 20.32%

Accessory 0.6876 0.5087 0.3750 0.2778 0.5067 0.2404 0.1724 0.7898 17691 726 4.10% 14.95% 14.52%

Electronic 0.7336 0.5728 0.4352 0.3321 0.5420 0.2573 0.1834 0.8389 12944 597 4.61% 10.94% 11.94%

Indoor 0.7241 0.5595 0.4149 0.3080 0.5307 0.2461 0.1727 0.8639 15847 652 4.12% 13.40% 13.04%

Furniture 0.7362 0.5715 0.4261 0.3179 0.5411 0.2519 0.1825 0.9121 29481 1257 4.26% 24.93% 25.14%

Outdoor 0.6960 0.5171 0.3748 0.2684 0.5158 0.2447 0.1768 0.7875 12880 560 4.35% 10.89% 11.20%

Sports 0.7443 0.5771 0.4365 0.3330 0.5547 0.2786 0.2040 0.8750 23218 938 4.04% 19.63% 18.76%

• (d) “a train traveling down train tracks next to a forest”

These examples illustrate the robustness of our approach in generating contextually

relevant and accurate descriptions even for GAN-generated images, which often

contain complex and varied content.

Table 4 presents the evaluation of our image captioning approach on supercat-

egories from the MSCOCO image captioning dataset. In this context, supercate-

gories are classifications within the dataset, such as “Person”, “Vehicle”, “Food”,

“Kitchen”, “Appliance”, “Animal”, “Accessory”, “Electronic”, “Indoor”, “Furni-

ture”, “Outdoor”, and “Sports”, which group together related objects and scenes.

The purpose of this evaluation is to identify the best and worst-performing cate-

gories, thereby highlighting the strengths and weaknesses of our approach. Each row

in the table represents a different supercategory, with corresponding performance

metrics. The highest-performing supercategory is “Appliance”, which achieves the

top scores in several metrics, including BLEU-1 (0.7517), BLEU-2 (0.5952), and

BLEU-3 (0.4365). This indicates that our proposed approach is effective in gener-

ating accurate and contextually relevant captions for images related to appliances.

The high scores across multiple BLEU-n metrics, as well as high scores in ROUGE-

L and CIDEr, show that the approach is able to consistently capture details within

this supercategory. On the other hand, the “Vehicle” supercategory has some of

the lowest scores, particularly in BLEU-4 (0.2589), ROUGE-L (0.5085), and CIDEr

(0.8044). This suggests that our approach struggles with accurately captioning im-

ages within this category, potentially due to the complex and varied nature of

vehicles and their surrounding environments. The lower scores across these metrics

indicate a need for further refinement and inclusion of additional contextual data

to improve performance in this category. Additionally, the “Animal” supercategory

has the highest CIDEr score (0.9779), which reflects the strength of the approach in

generating captions that are both relevant and diverse for images featuring animals.

This high CIDEr score is supported by strong performances in BLEU-1, BLEU-2,

and METEOR, underscoring the effectiveness of the approach furthermore. The

number of images in each supercategory also appears to influence the performance

metrics. Categories with a larger number of training images, such as “Person”

(64115 images) and “Furniture” (29481 images), present high metric scores. In con-
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Table 5. ANOVA results for various metrics

Factor Sum of Squares Degrees of Freedom F-statistic P-value Performance Metrics

Layer 0.059963 4 174.8955 2.104× 10−26 BLEU-1

Supercategory 0.024904 11 26.413 8.034× 10−16 BLEU-1

Residual 0.003771 44 BLEU-1

Layer 0.1186 4 274.288 1.737× 10−30 BLEU-2

Supercategory 0.049226 11 41.413 1.462× 10−19 BLEU-2

Residual 0.004755 44 BLEU-2

Layer 0.167 4 410.037 3.360× 10−34 BLEU-3

Supercategory 0.045194 11 40.342 2.448× 10−19 BLEU-3

Residual 0.004481 44 BLEU-3

Layer 0.1644 4 421.821 1.832× 10−34 BLEU-4

Supercategory 0.034463 11 32.153 1.983× 10−17 BLEU-4

Residual 0.004287 44 BLEU-4

Layer 0.032873 4 590.720 1.312× 10−37 METEOR

Supercategory 0.007765 11 50.742 2.572× 10−21 METEOR

Residual 0.000612 44 METEOR

Layer 0.027437 4 236.179 4.048× 10−29 ROUGE-L

Supercategory 0.019794 11 61.960 4.509× 10−23 ROUGE-L

Residual 0.001278 44 ROUGE-L

Layer 1.207 4 485.277 9.060× 10−36 CIDEr

Supercategory 0.2139 11 31.260 3.392× 10−17 CIDEr

Residual 0.027369 44 CIDEr

Layer 0.021805 4 191.152 3.344× 10−27 SPICE

Supercategory 0.003872 11 12.343 3.809× 10−10 SPICE

Residual 0.001255 44 SPICE

trast, categories with fewer images, like “Appliance” (7880 images) and “Electronic”

(12944 images), still perform well, particularly “Appliance”, despite having a lower

number of images. This shows that while the quantity of training data is important,

the ability of the approach to generalize in certain categories can compensate for

smaller datasets. However, categories like “Vehicle” with a sufficient number of im-

ages (27358 images) still underperform, indicating that both data quantity and the

complexity of the supercategory significantly affect performance. In summary, while

the approach performs well in categories such as “Appliance” and “Animal”, the

performance in categories like “Vehicle” indicates a need for improvement. Although

categories with a higher number of training images, like “Person” and “Furniture”,

generally perform well, the results in “Appliance” despite its smaller dataset show

that data quantity is not the only factor. Results for the 3, 6, 12, and 15 layers are

presented in Tables A1, A2, A3, A4, respectively.

Table 5 presents the results of an Analysis of Variance (ANOVA) test applied

to assess the impact of different factors—specifically, approach type and supercate-

gory—on performance metrics. The factors under consideration include the different

number of layers being compared (Layer) and the various data groupings or cat-

egories (Supercategory). The “Residual” in the table represents the unexplained

variance after considering the influence of the factors under study. The Sum of

Squares quantifies the variance in the performance metrics that can be attributed

to each factor, with higher values indicating a greater contribution to the observed
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Table 6. Tukey significance test results for different approach layers (Metric: CIDEr)

Group 1 Group 2 Mean Difference P-Adj Lower Upper Reject

12-layer 15-layer -0.3000 0.0000 -0.3763 -0.2238 True

12-layer 3-layer 0.0129 0.9890 -0.0633 0.0892 False

12-layer 6-layer 0.0086 0.9977 -0.0677 0.0848 False

12-layer 9-layer 0.1232 0.0003 0.0469 0.1995 True

15-layer 3-layer 0.3130 0.0000 0.2367 0.3892 True

15-layer 6-layer 0.3086 0.0000 0.2324 0.3849 True

15-layer 9-layer 0.4232 0.0000 0.3470 0.4995 True

3-layer 6-layer -0.0044 0.9998 -0.0806 0.0719 False

3-layer 9-layer 0.1103 0.0013 0.0340 0.1865 True

6-layer 9-layer 0.1146 0.0008 0.0384 0.1909 True

variance. The Degrees of Freedom shows the number of levels within each factor,

while the F-statistic measures the effect of the factor on the performance met-

rics, with higher values indicating an important effect. The P-value assesses the

statistical significance of these effects, with lower values (typically less than 0.05)

indicating that the factor has a significant impact. For most metrics, the “Layer”

factor consistently shows significant P-values, proving that changes in the number

of layers significantly influence approach performance. This is particularly obvious

with METEOR and CIDEr scores, where very low P-values means high statistical

significance. The “Supercategory” factor varies in its impact across different metrics

but generally shows lower significance compared to the “Layer” factor according to

P-values. The “Residual” Sum of Squares values are significantly lower compared

to those of “Layer” and “Supercategory” which indicates that most of the variance

in the performance metrics is successfully explained by these two factors.

Table 6 presents the results of a Tukey significance test, conducted to compare

the performance of different layer configurations using the CIDEr metric. The pa-

rameters included in the table are as follows: “Group 1” and “Group 2” refer to the

pairs of approach layers being compared, with each group representing a different

number of layers (3-layer, 6-layer, 9-layer, 12-layer, and 15-layer). The “Mean Dif-

ference” column shows the difference in mean CIDEr scores between two groups. A

negative value indicates that Group 1 outperforms Group 2, while a positive value

indicates that Group 2 outperforms Group 1. This is calculated by subtracting the

mean CIDEr score of Group 1 from Group 2. The “P-Adj” column contains the

P-values adjusted for multiple comparisons using the Tukey method; a low P-Adj

value (typically less than 0.05) indicates that the observed difference in mean CIDEr

scores is statistically significant. The “Lower” and “Upper” columns represent the

lower and upper bounds of the confidence interval for the mean difference, providing

a range within which the true difference in means is likely to fall. The “Reject” col-

umn shows whether the null hypothesis—that there is no difference in mean scores
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Table 7. Complexity analysis of our approach on training and test, with GPU memory usage,
training time, and inference time per image.

Training Test

# of

Layers

Parameters

(Million)

GPU Memory

Allocated (GB)

Max GPU Memory

Allocated (GB)

GPU Memory

Reserved (GB)

Max GPU Memory

Reserved (GB)

Training Time

(s)

Inference Time

(s) for 100 Images

Average Seconds

Per Image

3 187.44 1.82 2.79 3.30 3.30 929.71 41.91 0.42

6 262.97 2.73 4.17 4.70 4.70 1162.84 63.62 0.64

9 338.50 3.63 5.54 6.19 6.19 1397.20 88.26 0.88

12 414.04 4.54 6.92 7.66 7.66 1735.95 110.79 1.11

15 489.57 5.45 8.30 9.24 9.24 2088.02 133.96 1.34

between the two groups—can be rejected. A “True” value indicates a statistically

significant difference, while a “False” value means there is no significant difference.

In the comparison between the 12-layer and 15-layer approaches, the mean dif-

ference of -0.3 indicates that the 12-layer approach performs better. The significant

P-value (P-Adj < 0.001) confirms that this difference is statistically reliable. Al-

though the 3-layer and 6-layer approaches show a slightly better performance than

the 12-layer approach, with mean differences of 0.0129 and 0.0086 respectively,

these differences are not statistically significant, as indicated by the high P-values

(P-Adj = 0.989 and 0.9977). The 9-layer approach significantly outperforms the

12-layer approach, with a mean difference of 0.1232 and a highly significant P-value

of 0.0003, indicating an improvement in performance. The 15-layer approach per-

forms significantly worse than the 3-layer, 6-layer, and 9-layer approaches, with

mean differences of 0.313, 0.3086, and 0.4232 respectively, all of which have highly

significant P-values of 0.000. The 3-layer approach performs slightly better than the

6-layer approach with a mean difference of -0.0044, but this difference is not statis-

tically significant, as indicated by the high P-value of 0.9998. The 9-layer approach

significantly outperforms both the 3-layer and 6-layer approaches, with mean dif-

ferences of 0.1103 and 0.1146 respectively, and very low P-values of 0.0013 and

0.0008, confirming substantial improvements in performance. In the supplementary

information, additional comparisons using the BLEU-n, ROUGE-L, METEOR, and

SPICE metrics are presented in Tables B1, B2, B3, B4, B5, B6, B7, respectively.

Table 7 presents a complexity analysis of our approach, detailing GPU memory

usage, training time, and inference time for approaches with 3 to 15 layers. As the

number of layers increases, the number of parameters ranges from 187.44 million (3

layers) to 489.57 million (15 layers), causing higher GPU memory usage and longer

training and inference times. GPU memory allocation rises from 1.82 GB to 5.45

GB, and training time from 929.71 seconds to 2088.02 seconds. Inference time for

100 images also increases from 41.91 seconds (3 layers) to 133.96 seconds (15 layers),

with the average time per image ranging from 0.42 to 1.34 seconds in blind test. This

shows the trade-off between approach depth and computational resources, highlight-

ing the need for balance based on available resources and performance requirements.

While deeper approaches capture more complex patterns, they demand significantly

more resources. The 9-layer approach is the best option for image captioning based

on its superior performance metrics and balanced resource requirements. It achieves
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the highest scores in BLEU-1 (0.705), BLEU-2 (0.522), BLEU-3 (0.374), BLEU-4

(0.268), and ROUGE-L (0.507) with a reasonable sacrifice for the user in terms of

processing time as it increases from 0.42 (3 layers) to 0.88 seconds (9 layers) during

the blind test. Additionally, the 9-layer approach maintains a reasonable balance in

GPU memory usage and training/inference times compared to deeper approaches.

The optimal balance between performance and computational efficiency makes the

9-layer approach the ideal choice for high-quality image captioning.

5. Conclusion

Encoder-decoder frameworks often encounter difficulties in efficiently extracting

and utilizing contextual information from encoded data, causing inadequate per-

formance in caption generation. To address these issues, in this paper, we have

introduced a novel image captioning approach utilizing the NASNet-Large CNN

encoder and a multi-layer GRU based decoder under the init-inject architecture.

This modification substantially enhances the ability of the decoder to modulate the

relevant information flow within the unit, thereby addressing the long-standing is-

sue of RNN decoders challenged by managing long-term complex dependencies. The

outcome is an improved decoder capable of producing semantically consistent and

contextually accurate captions. Experimental results obtained from comprehensive

evaluations in the MSCOCO dataset validate the effectiveness of our approach.

Regarding the different CNN-based encoders considered in the image captioning

system, NASNet-Large architecture outperforms the other compared architectures

in terms of seven out of eight performance metrics (i.e., BLEU-1, BLEU-2, BLEU-

3, BLEU-4, ROUGE-L, METEOR, and CIDEr). The empirical analysis indicates

that multi-layer GRU based decoders can yield higher performance compared to

single-layer. The performance improvements can be achieved as the number of lay-

ers increases up to 9 layers. However, there is a subtle trend of a decrease with 12

and 15 layers. This system was developed to respond to significant challenges in

the image captioning field, particularly in generating semantically consistent and

grammatically accurate captions. Our future work will focus on the implementation

of attention mechanisms to enhance caption generation by prioritizing key parts of

the input image.
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24 Özkan Çaylı, Volkan Kılıç, Aytuğ Onan, Wenwu Wang

Appendix A: Supercategory Results

Table A1. Performance metrics across various supercategories for a 3-layered GRU model on a
new dataset, showcasing BLEU, METEOR, ROUGE-L, CIDEr, and SPICE scores.

Supercategory BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

electronic 0.7087 0.5430 0.4010 0.2945 0.2480 0.5257 0.7578 0.1709

vehicle 0.6539 0.4645 0.3211 0.2252 0.2205 0.4793 0.7122 0.1582

outdoor 0.6753 0.4938 0.3531 0.2507 0.2317 0.4955 0.7424 0.1626

food 0.6679 0.4817 0.3426 0.2434 0.2211 0.4858 0.6295 0.1623

sports 0.7106 0.5321 0.3815 0.2743 0.2552 0.5264 0.7439 0.1769

indoor 0.6791 0.5100 0.3723 0.2680 0.2274 0.5064 0.7338 0.1567

person 0.6751 0.4930 0.3513 0.2516 0.2348 0.4977 0.7844 0.1638

animal 0.6701 0.4967 0.3606 0.2586 0.2360 0.5067 0.8358 0.1706

appliance 0.7205 0.5613 0.4098 0.2964 0.2362 0.5338 0.6642 0.1572

kitchen 0.6956 0.5217 0.3814 0.2778 0.2340 0.5109 0.7635 0.1688

accessory 0.6401 0.4573 0.3235 0.2327 0.2164 0.4715 0.6618 0.1489

furniture 0.7036 0.5348 0.3951 0.2904 0.2379 0.5226 0.8099 0.1659

Table A2. Performance metrics across various supercategories for a 6-layered GRU model on a

new dataset, showcasing BLEU, METEOR, ROUGE-L, CIDEr, and SPICE scores.

Supercategory BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

electronic 0.7191 0.5599 0.4216 0.3173 0.2477 0.5315 0.7792 0.1706

vehicle 0.6628 0.4741 0.3228 0.2200 0.2192 0.4774 0.6874 0.1522

outdoor 0.6789 0.4906 0.3461 0.2393 0.2269 0.4948 0.7153 0.1594

food 0.6762 0.4905 0.3463 0.2452 0.2143 0.4849 0.6093 0.1584

sports 0.7264 0.5484 0.4029 0.2941 0.2613 0.5318 0.7677 0.1738

indoor 0.7047 0.5351 0.3952 0.2867 0.2296 0.5159 0.7639 0.1574

person 0.6824 0.5011 0.3605 0.2609 0.2342 0.4972 0.7785 0.1595

animal 0.6826 0.5130 0.3741 0.2692 0.2391 0.5098 0.8522 0.1699

appliance 0.7276 0.5689 0.4114 0.2930 0.2315 0.5416 0.6439 0.1597

kitchen 0.7025 0.5295 0.3896 0.2831 0.2289 0.5122 0.7437 0.1665

accessory 0.6525 0.4703 0.3344 0.2383 0.2143 0.4737 0.6534 0.1444

furniture 0.7102 0.5406 0.3994 0.2928 0.2337 0.5207 0.7922 0.1631
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Table A3. Performance metrics across various supercategories for a 12-layered GRU model on a
new dataset, showcasing BLEU, METEOR, ROUGE-L, CIDEr, and SPICE scores.

Supercategory BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

electronic 0.7094 0.5487 0.4075 0.3001 0.2393 0.5256 0.7452 0.1665

vehicle 0.6724 0.4806 0.3286 0.2216 0.2214 0.4863 0.7026 0.1583

outdoor 0.6771 0.4976 0.3582 0.2562 0.2290 0.4984 0.7350 0.1598

food 0.6795 0.4925 0.3420 0.2339 0.2102 0.4843 0.5861 0.1545

sports 0.7325 0.5632 0.4178 0.3085 0.2642 0.5393 0.8008 0.1845

indoor 0.7081 0.5423 0.3990 0.2860 0.2289 0.5161 0.7667 0.1602

person 0.6887 0.5089 0.3640 0.2604 0.2337 0.5020 0.7919 0.1622

animal 0.6817 0.5079 0.3645 0.2570 0.2325 0.5047 0.8330 0.1730

appliance 0.7120 0.5574 0.4014 0.2838 0.2247 0.5366 0.5835 0.1527

kitchen 0.7023 0.5292 0.3859 0.2765 0.2257 0.5109 0.7194 0.1641

accessory 0.6606 0.4767 0.3330 0.2321 0.2130 0.4776 0.6515 0.1479

furniture 0.7119 0.5435 0.3988 0.2873 0.2305 0.5221 0.7682 0.1601

Table A4. Performance metrics across various supercategories for a 15-layered GRU model on a

new dataset, showcasing BLEU, METEOR, ROUGE-L, CIDEr, and SPICE scores.

Supercategory BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

electronic 0.6328 0.4365 0.2739 0.1698 0.1873 0.4709 0.4297 0.1250

vehicle 0.6106 0.3924 0.2169 0.1168 0.1759 0.4442 0.4063 0.1234

outdoor 0.6179 0.4043 0.2395 0.1305 0.1825 0.4562 0.4160 0.1307

food 0.5881 0.3584 0.1972 0.1031 0.1573 0.4347 0.3183 0.1008

sports 0.6753 0.4666 0.2844 0.1628 0.2088 0.5007 0.4787 0.1486

indoor 0.6110 0.4155 0.2576 0.1570 0.1762 0.4578 0.4300 0.1164

person 0.6278 0.4155 0.2465 0.1417 0.1862 0.4663 0.4543 0.1299

animal 0.6268 0.4198 0.2467 0.1362 0.1875 0.4701 0.4944 0.1372

appliance 0.6458 0.4726 0.3138 0.2033 0.1861 0.4910 0.3962 0.1156

kitchen 0.6146 0.4060 0.2474 0.1467 0.1707 0.4580 0.4049 0.1116

accessory 0.6089 0.3971 0.2391 0.1432 0.1714 0.4464 0.3882 0.1215

furniture 0.6376 0.4401 0.2782 0.1732 0.1844 0.4772 0.4664 0.1219
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Appendix B: Tukey Results

Table B1. Tukey significance test results for different model layers (Metric: BLEU-1)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.0699 0.0000 -0.0962 -0.0436 True

12-layer 3-layer -0.0113 0.7438 -0.0376 0.0150 False

12-layer 6-layer -0.0009 1.0000 -0.0271 0.0254 False

12-layer 9-layer 0.0251 0.0682 -0.0012 0.0514 False

15-layer 3-layer 0.0586 0.0000 0.0323 0.0849 True

15-layer 6-layer 0.0691 0.0000 0.0428 0.0953 True

15-layer 9-layer 0.0950 0.0000 0.0687 0.1213 True

3-layer 6-layer 0.0104 0.7948 -0.0158 0.0367 False

3-layer 9-layer 0.0364 0.0023 0.0101 0.0627 True

6-layer 9-layer 0.0260 0.0547 -0.0003 0.0522 False

Table B2. Tukey significance test results for different model layers (Metric: BLEU-2)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.1020 0.0000 -0.1380 -0.0659 True

12-layer 3-layer -0.0132 0.8388 -0.0493 0.0229 False

12-layer 6-layer -0.0022 0.9998 -0.0383 0.0339 False

12-layer 9-layer 0.0292 0.1647 -0.0068 0.0653 False

15-layer 3-layer 0.0888 0.0000 0.0527 0.1248 True

15-layer 6-layer 0.0998 0.0000 0.0637 0.1358 True

15-layer 9-layer 0.1312 0.0000 0.0952 0.1673 True

3-layer 6-layer 0.0110 0.9099 -0.0251 0.0471 False

3-layer 9-layer 0.0425 0.0133 0.0064 0.0785 True

6-layer 9-layer 0.0315 0.1151 -0.0046 0.0675 False
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Table B3. Tukey significance test results for different model layers (Metric: BLEU-3)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.1216 0.0000 -0.1562 -0.087 True

12-layer 3-layer -0.0089 0.9487 -0.0436 0.0257 False

12-layer 6-layer 0.0003 1.0000 -0.0343 0.0349 False

12-layer 9-layer 0.0316 0.0898 -0.0030 0.0662 False

15-layer 3-layer 0.1127 0.0000 0.0781 0.1473 True

15-layer 6-layer 0.1219 0.0000 0.0873 0.1565 True

15-layer 9-layer 0.1532 0.0000 0.1186 0.1878 True

3-layer 6-layer 0.0092 0.9425 -0.0254 0.0439 False

3-layer 9-layer 0.0405 0.0140 0.0059 0.0751 True

6-layer 9-layer 0.0313 0.0949 -0.0033 0.0659 False

Table B4. Tukey significance test results for different model layers (Metric: BLEU-4)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.1183 0.0000 -0.1488 -0.0877 True

12-layer 3-layer -0.0033 0.9980 -0.0339 0.0272 False

12-layer 6-layer 0.0030 0.9986 -0.0275 0.0336 False

12-layer 9-layer 0.0337 0.0238 0.0031 0.0643 True

15-layer 3-layer 0.1149 0.0000 0.0844 0.1455 True

15-layer 6-layer 0.1213 0.0000 0.0907 0.1519 True

15-layer 9-layer 0.1519 0.0000 0.1214 0.1825 True

3-layer 6-layer 0.0064 0.9765 -0.0242 0.0369 False

3-layer 9-layer 0.0370 0.0102 0.0064 0.0676 True

6-layer 9-layer 0.0306 0.0049 0.0001 0.0612 True

Table B5. Tukey significance test results for different model layers (Metric: METEOR)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.0482 0.0000 -0.0624 -0.034 True

12-layer 3-layer 0.0038 0.9402 -0.0104 0.0181 False

12-layer 6-layer 0.0023 0.9908 -0.0119 0.0165 False

12-layer 9-layer 0.0218 0.0006 0.0076 0.036 True

15-layer 3-layer 0.0521 0.0000 0.0379 0.0663 True

15-layer 6-layer 0.0505 0.0000 0.0363 0.0647 True

15-layer 9-layer 0.0700 0.0000 0.0558 0.0842 True

3-layer 6-layer -0.0015 0.9990 -0.0158 0.0127 False

3-layer 9-layer 0.0180 0.0066 0.0037 0.0322 True

6-layer 9-layer 0.0195 0.0026 0.0053 0.0337 True
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Table B6. Tukey significance test results for different model layers (Metric: ROUGE-L)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.0442 0.0000 -0.0667 -0.0217 True

12-layer 3-layer -0.0035 0.9924 -0.0260 0.0191 False

12-layer 6-layer -0.0010 0.9999 -0.0236 0.0215 False

12-layer 9-layer 0.0216 0.0664 -0.0009 0.0441 False

15-layer 3-layer 0.0407 0.0000 0.0182 0.0633 True

15-layer 6-layer 0.0432 0.0000 0.0206 0.0657 True

15-layer 9-layer 0.0658 0.0000 0.0433 0.0883 True

3-layer 6-layer 0.0024 0.9981 -0.0201 0.025 False

3-layer 9-layer 0.0251 0.0221 0.0025 0.0476 True

6-layer 9-layer 0.0226 0.0485 0.0001 0.0452 True

Table B7. Tukey significance test results for different model layers (Metric: SPICE)

Group 1 Group 2 Mean Diff. P-Adj Lower Upper Reject

12-layer 15-layer -0.0384 0.0000 -0.0495 -0.0273 True

12-layer 3-layer 0.0016 0.9944 -0.0095 0.0127 False

12-layer 6-layer -0.0007 0.9997 -0.0119 0.0104 False

12-layer 9-layer 0.0200 0.0000 0.0089 0.0311 True

15-layer 3-layer 0.0400 0.0000 0.0289 0.0511 True

15-layer 6-layer 0.0377 0.0000 0.0266 0.0488 True

15-layer 9-layer 0.0584 0.0000 0.0473 0.0695 True

3-layer 6-layer -0.0023 0.9976 -0.0134 0.0088 False

3-layer 9-layer 0.0184 0.0002 0.0073 0.0295 True

6-layer 9-layer 0.0207 0.0000 0.0096 0.0318 True


